On homogeneous spaces of rank one
نویسندگان
چکیده
منابع مشابه
Joinings of Higher Rank Diagonalizable Actions on Locally Homogeneous Spaces
We classify joinings between a fairly general class of higher rank diagonalizable actions on locally homogeneous spaces. In particular, we classify joinings of the action of a maximal R-split torus on G/Γ, with G a simple Lie group of R-rank ≥ 2 and Γ < G a lattice. We deduce from this a classification of measurable factors of such actions, as well as certain equidistribution properties.
متن کاملCohomogeneity One Actions on Noncompact Symmetric Spaces of Rank One
We classify, up to orbit equivalence, all cohomogeneity one actions on the hyperbolic planes over the complex, quaternionic and Cayley numbers, and on the complex hyperbolic spaces CHn, n ≥ 3. For the quaternionic hyperbolic spaces HHn, n ≥ 3, we reduce the classification problem to a problem in quaternionic linear algebra and obtain partial results. For real hyperbolic spaces, this classificat...
متن کاملOn Sets with Rank One in Simple Homogeneous Structures
We study de nable sets D of SU-rank 1 inM, whereM is a countable homogeneous and simple structure in a language with nite relational vocabulary. Each such D can be seen as a `canonically embedded structure', which inherits all relations on D which are de nable inM, and has no other de nable relations. Our results imply that if no relation symbol of the language of M has arity higher than 2, the...
متن کاملLocalization operators on homogeneous spaces
Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...
متن کاملSingular Integrals on Symmetric Spaces of Real Rank One
In this paper we prove a new variant of the Herz majorizing principle for operators defined by K-bi-invariant kernels with certain large-scale cancellation properties. As an application, we prove L p-boundedness of operators defined by Fourier multipliers which satisfy singular differential inequalities of the Hörmander-Michlin type. We also find sharp bounds on the L p-norm of large imaginary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 1995
ISSN: 0019-3577
DOI: 10.1016/0019-3577(95)93199-k